R19 Course Code: 19EC0446

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Analog electronics circuits(19EC0446)

Year & Sem: II-B.Tech& II-Sem

Course & Branch: B.Tech EEE

Regulation: R19

UNIT -I FEEDBACK AMPLIFIERS

1	a) Illustrate the basic concept of Feedback amplifier with suitable block diagram	[L2][CO1]	[6M]
	b) List the characteristics of negative feedback amplifiers.	[L1][CO1]	[6M]
2	a) Explain in detail about basic Amplifiers used in Feedback amplifiers.	[L2][CO2]	[6M]
	b) Interpret Feedback amplifier topologies with necessary diagram.	[L2][CO2]	[6M]
3	a) Prove that bandwidth of an amplifier can be extended by using negative	[L5][CO3]	[6M]
	feedback amplifier?	[L4][CO3]	[6M]
	b) An amplifier has voltage gain with feedback of 100. If the gain without feedback		
	changes by 20% and the gain with feedback should not vary more than 2%,		
	determine the value of open-loop gain, A and feedback ratio, β.		
4	Derive the expressions of Gain, input and output resistances for a VoltageShuntFBA.	[L2][CO3]	[12M]
5	Derive the expressions of Gain, input and output resistances for a VoltageSeries	[L2][CO3]	[12M]
	FBA.		
6	a) Determine the input and output resistances of Current Shuntfeedbackamplifier.	[L2][CO1]	[6M]
	b) An amplifier has midband voltage gain of 1000 with f _L =50Hz ,f _h =50khz ,if 5%	[L4][CO3]	[6M]
	of feedback is applied then calculate f _L ,f _h with feedback		
7	Determine the voltage gain ,input and output impedance with feedback for voltage	[L4][CO3]	[12M]
	series having A=-100, R_i =10kohm, R_o =10kohm for feedback of i) β =-0.1 ii) β =-0.5		
8	a) Compare and Contrast the various types of feedback amplifiers.	[L2][CO1]	[6M]
	b) an amplifier has open lop gain 1000 and feedback ration 0.04if the open lop gain	[L4][CO3]	[6M]
	changes by 10% due to temperature find the percentage change in gain of the amplifier		
	feedback	II 1110011	[(A)]
9	a)compare positive feedback and negative feedback amplifiers	[L1][CO1]	[6M]
10	b) Show that negative feedback reduces gain of an Amplifier.	[L1][CO1]	[6M]
10	Derive the expressions of Gain, input and output resistances for a current Series	[L2][CO3]	[12M]
	FBA.		

UNIT -II OSCILLATORS

1	a) Illustrate the condition for oscillation with suitable diagram.	[L2][CO1]	[6M]
	b) Interpret the various types of oscillators.	[L1][CO1]	[6M]
2	a Construct RC phase shift oscillator using BJT with necessary diagram and derive	[L2][CO2]	[6M]
	its expression for frequency of oscillations.		[6M]
	b Determine the frequency of oscillations when a RC phase shift oscillator has	[L5][CO2]	
	$R=100~k\Omega,~C=0.01\mu F$ and $R_C=2.2~K\Omega.$		
3	a) Determine the condition for sustained oscillations for an RC phase shift	[L5][CO3]	[6M]
	Oscillator with necessary circuit diagrams.		[6M]
	b) Design a RC phase shift oscillator to generate 5 KHz sine wave with 20		
	V peak to peak amplitude. Draw the designed circuit. Assume $h_{fe} =$	[L3][C04]	
	150.		
4	a) Explain the working principle of Wein-bridge oscillator using BJT and derive	[L2][CO5]	[6M]
	the expression for frequency of oscillations.	H 211 CO 41	[6M]
	b) In a Wein-bridge oscillator, if the value of R is 100 K Ω , and frequency of	[L2][CO4]	
	oscillation is 10 KHz, Examine the value of capacitor C.		
5	Analyze an LC Oscillator with necessary equation	[L4][CO6]	[12M]
6	Explain Hartley oscillator using BJT and derive the expression for its frequency of oscillations and condition for sustained oscillations	[L2][CO3]	[12M]
7	a) Explain in detail aboutCrystal oscillator and give the expression for its frequency	[L2][CO3]	[6M]
'	of oscillations.	[22][000]	[01/1]
	 b) In a transistorized Hartley oscillator, the two inductances are 2 mH and 20 μH 		
	while the frequency is to be changed from 950 KHz to 2050 KHz. Calculate	[L1][CO4]	[6M]
	the range over which the capacitor is to be varied.		
8	a) Draw the circuit diagram of Colpitts oscillator using BJT and derive the	[L2][CO2]	[6M]
	expression for frequency of oscillations.		
	b) Colpitts oscillator is designed with $C_1 = 100$ pF and $C_2 = 7500$ pF. The	[L3][CO4]	
	inductance is variable. Determine the range of inductance values, if the		[6M]
	frequency of oscillation is to vary between 950 KHz to 2050 KHz.		
9	Analyze the condition for sustained oscillations for Hartley and Colpitts	[L1][CO6]	[12M]
	oscillator with suitable equation.		
10	a) Explain the concept of stability in Oscillators in detail.	[L2][CO2]	[6M]
	b) In the Colpitts oscillator, $C_1 = 0.2\mu F$ and $C_2 = 0.02 \mu F$. If the frequency of	[L3][CO4]	[6M]
	oscillationis 10kHz, Examine the value of inductor.		

Course	Code: 19EC0440		
1	a) Draw the various functional blocks of an operational amplifier IC. Explain each block.	[L2][CO2]	[6M]
	b). Draw the equivalent circuit diagram of Op amp and derive the expression for gain of inverting amplifier.	[L2][CO2]	[6M]
2	a). What is level translator? Explain the necessity of level translator stage in	[L1][CO1]	[6M]
	cascading differential amplifiers. b). Compare different configurations of differential amplifier.	[L2][CO1]	[6M]
3	a) Discuss the electrical characteristics of an OP-AMP in detail.	[L1][CO1]	[6M]
	b). Explain the term slew rate and write the importance in op-amp circuits?	[L2][CO3]	[6M]
4	a)What are the four different configuration of differential amplifier? b).	[L1][CO1]	[6M]
	Compare and contrast ideal and practical op-amp?	[L2][CO3]	[6M]
5	a)The op-amp non-inverting amplifier and derive the voltage gain?	[L2][CO3]	[6M]
	b). Explain ac characteristics of op-amp?	[L2][CO3]	[6M]
6	a)Explain dc characteristics of op-amp? b)define the terms cmrr,	[L2][CO3]	[6M]
	common mode gain, differential mode gain, slew rate	[L1][CO2]	[6M]]
7	a) List out the ideal characteristics of an operational amplifier.	[L4][CO3]	[6M]
	b) An op-amp has a slew rate of $2V/\mu s$. What is the maximum frequency of an	[L4][CO4]	[6M]
	output sinusoid of peak value 5V at which the distortion sets in due to the slew		
	rate limitation		
8	a) What is voltage follower? What are its features and applications?	[L2][CO1]	[6M]
	b)Explain briefly i)virtual ground concept b)current mirror circuit	[L2][CO3]	[6M]]
9	a)Draw and explain frequency response of practical op-amp b)Define	[L2][CO3]	[6M]
10	the terms drift,offsetvoltage,psrr,offset current	[L1][CO2]	[6M]
10	a) what is frequency compensation and explain how the frequency response is	[L2][CO3]	[6M]
	varied with respect to Compensation network b)Design an	FT 03FG0 43	[CM]
	inverting amplifier with gain A= 10	[L3][CO4]	[6M]

UNIT –IV APPLICATIONS OF THE OP-AMP

1	a) Design and explain the operation of inverting summing amplifier. b) The op-amp non-inverting summing circuit has the following parameters V_{CC} = +15 V, V_{EE} = -15 V, $R = R_1$ = 1 k Ω , R_f = 2 k Ω , V_1 = +2 V, V_2 = -3 V, V_3 = +4 V. Determine the output voltage $V_{o.?}$	[L3][CO3] [L5][CO4]	[6M] [6M]
2	a)Draw the circuit of a difference amplifier with one op-amp and derive the	[L2][CO2]	[6M]
	expression for voltage gain b) An inverting amplifier with gain 1 have different input voltage: 1.2v,3.2v and 4.2v. Find the output voltage?	[L5][CO4]	[6M]
3	Draw a neat circuit of an integrator circuit. Explain the functioning with the input-output waveforms and derive the output equation	[L2][CO2]	[12M]
4	Draw a neat circuit of an integrator circuit. Explain the functioning with the input- output waveforms and derive the output equation	[L2][CO2]	[12M]
5	a) Design a differentiator to differentiate an input signal that varies in frequency from 10 Hz to about 1 kHz.	[L3][CO3]	[6M]
	b)Explain sample and hold circuit using op-amp	[L2][CO1]	[6M]
6	a)Drawa neat circuit of astablemultivibrator using op-amp and explain	[L2][CO3]	[6M]

	operation with waveforms b)Define duty cycle ,if T_{on} =0.6 msec , T_{off} =0.4 msec calculate percentage of duty cycle	[L5][CO4]	[6M]
7	a)Drawa neat circuit of monbostablemultivibrator using op-amp and explain	[L2][CO2]	[6M]
	operation with waveforms b)Derive the equation for pulse width of the monostable multivibrator using opamp	[L3][CO3]	[6M]
8	a)Derive the equation for frequency of oscillation of astablemultivibrator using op-	[L3][CO3]	[6M]
	amp b)Forastablemultivibrator R_2 =10 kohm, R_1 =8.6 kohm, R_f =100 kohm and C=0.01 μ F calculate frequency of oscilation	[L5][CO4]	[6M]
9	a)Drawcircuit diagram of triangular wave generator using op-amp and explain	[L2][CO2]	[6M]
	operation with waveforms b)Discuss the applications of Astablemultivibrator?	[L2][CO1]	[6M]
10	Explain the operation of triangular wave generator with neat circuit diagram and	[L3][CO2]	[12M]
	derive the equation for output frequency		

UNIT –V ACTIVE FILTERS AND CONVERTERS USING OP-AMP

	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	FT #35 @ 0 43	F = 3 = 3
1	a)Define a filter. how filters are classified	[L5][CO2]	[5M]
	b)Draw the circuit diagram and explain first order low pass butter worth filter	[L2][CO2]	[7M]
2	a)Explain various types of filters along with their frequency response	[L3][CO3]	[6M]
	b)Draw the circuit diagram and explain first order high pass butter worth filter	[L2][CO2]	[6M]
3	Design a lowpass filter at a cut-of frequency of 15.9kHz with	[L3][CO3]	[12M]
	passband gain 1.5 and plot frequency response of this circuit	. 31	
4	Design a highpass filter at a cut-of frequency of 10kHz with	[L3][CO3]	[12M]
	passband gain 1.5 and plot frequency response of this circuit	. 31	
5	a). Draw and explain the weighted resistor DAC	[L2][CO3]	[6M]
	b)An 8-bit Analog to Digital converter has a supply voltage of +12	[L5][CO4]	[6M]
	volts. Calculate:		
	(i)The voltage step size for LSB.		
	(ii) The value of analog input voltage for a digital output of 01001011.		
6	a) Draw and explain in detail about R-2R DAC	[L2][CO3]	[6M]
	b). The basic step of a 9 bit DAC is 10.3 mV. If "000000000"	[L5][CO4]	[6M]
	represents 0 V. What output isproduced if the input is "101101111"?		
7	a) Explain about flash type ADC?	[L3][CO1]	[6M]
	b) Discuss the parameters specifications of ADC?	[L2][CO1]	[6M]
8	Draw the circuit diagram of Dual Slope ADC and explain its	[L3][CO2]	[12M]
	working with neatsketches		
9	a)Draw the circuit diagram of inverted R-2R DAC and explain its	[L2][CO2]	[6M]
	operation		[6M]
	b) Discuss the parameters specifications of DAC?	[L2][CO1]	
10	Explain different types of ADC and DAC	[L3][CO1]	[12M]

1. M A.PANDIYAN Assistant Professor/ECE